Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice.

نویسندگان

  • Ding Ai
  • Chiyuan Chen
  • Seongah Han
  • Anjali Ganda
  • Andrew J Murphy
  • Rebecca Haeusler
  • Edward Thorp
  • Domenico Accili
  • Jay D Horton
  • Alan R Tall
چکیده

Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9-/- mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Drugs and Technologies

1648 Abstract—Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in the regulation of cholesterol homeostasis. By binding to hepatic low-density lipoprotein (LDL) receptors and promoting their lysosomal degradation, PCSK9 reduces LDL uptake, leading to an increase in LDL cholesterol concentrations. Gain-of-function mutations in PCSK9 associated with high LDL cholester...

متن کامل

Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proteinase K subfamily of subtilases that reduces the number of LDL receptors (LDLRs) in liver through an undefined posttranscriptional mechanism. We show that purified PCSK9 added to the medium of HepG2 cells reduces the number of cell-surface LDLRs in a dose- and time-dependent manner. This activity was approximately 10-...

متن کامل

Plasma PCSK9 preferentially reduces liver LDL receptors in mice.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates the expression of LDL receptor (LDLR) protein. Gain-of-function mutations in PCSK9 cause hypercholesterolemia, and loss-of-function mutations result in lower plasma LDL-cholesterol. Here, we investigate the kinetics and metabolism of circulating PCSK9 relative to tissue levels of LDLRs. The administration...

متن کامل

Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome.

BACKGROUND Nephrotic syndrome (NS) leads to elevation of serum total and LDL cholesterol. This is largely due to impaired LDL clearance, which is caused by hepatic LDL receptor (LDLR) deficiency despite normal LDLR mRNA expression, pointing to a post-transcriptional process. The mechanism(s) by which NS causes LDLR deficiency is not known. By promoting degradation of LDLR, Proprotein Convertase...

متن کامل

Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

OBJECTIVE The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2012